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1. Introduction

The extreme values of a stochastic process rather than its usual values are

often of paramount interest. In a manufacturing plant, Lor example, a typical

concern is the queue length of parts waiting to be processed at a work station.

Small to moderate values of the queue may indicate that the system is operating

successfully and fluctuations in the queue are unimportant. On the other hand,

large queues may call for extraordinary measures such as the allocation of

auxiliary storage space, employee overtime, or rescheduling of production. A

natural question is: What is the probability that the queue will exceed a

specific critical value in a certain time period? Such questions are the focus

of this study. The following paragraphs describe the gist of our results.

Consider an M/ ,Il queueing system in which customers arrive at a single

server according to a Poisson process with rate X and the independent identi-

cally distributed service times have a mean -' . The queue-length

process is positive recurrent, null recurrent, or transient according to

whether the traffic intensity p = X/ i is below, equal, or greater than 1,

th
respectively. Let M denote the maximum queue length up to the n time then

system becomes empty. We say that M has the limit distribution F if there
n

are norming constants a n,bn > 0 such that

lim P((M -a )/b < x) = F(x),
n n n-' n-Ko

for each continuity point of F. If there are no such F, a n,b , we say that Mn

* ,does not have a limit distribution.

From the classical extreme value theory, as in Galambos (1978) or Leadbetter

et al. (1983),we have the following results:

."-P. " ,. .I- ' -. ' . .. . . '
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(1.1) If p 1, then lir P(M n/n < x) = e x > 0.
n-n

(1.2) If o < 1, then M does not have a limit distribution.n

Cohen (1969) proved (1.1) and an analogue for GI/M/I queues as well.

Related results appear in Iglehart (1972) for GI/G/Il queues and in Serfozo

(1986) for birth and death processes. Other insights on extremes of queues

appear in Heathcote (1965) and Heyde (1971). Anderson (1970) observed the

anomaly (1.2) and gave bounds on the distribution of M . The result (1.2) is due
n

to the property that if M is the maximum of n independent integer-valued random
n

variables with distribution F, then M does not have a limit distribution when
n

[F(m) - F(m-l)]/[l - F(m-l)] does not converge to 1; see for instance Theorem 1.7.13

of Leadbetter et al. (1983). The results (1.1) and (1.2) say that the maxima

of null recurrent queues have a limit while the maxima of positive recurrent

queues do not. This is the reverse of what one would anticipate.

In this paper, we show that maxima of positive recurrent queues are more

well behaved than (1.2) suggests. The key idea is that by allowing the basic

parameters of the queueing process to vary with n in a certain manner, then their

maxima do indeed have the three limiting distributions shown in (2.1). The

first and third distributions are the classical Frechet and Gumbel extreme-value

distributions, and the other distribution is a new one. We have shown in Serfozo

(1986), that the maxima of positive recurrent birth and death processes and M/M/s

queues also have these limit distributions. The present analysis differs in that

it involves subtle arguments dealing with the convergence of integrals of complex-

valued functions. In Section 2 we discuss M/G/l queues and in Section 3 we

discuss GI/M/l queues.

-r.
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2. Results for M/G/ 
l Queues

Property (1.1) encouraged us to investigate the maximum M of positiven

recurrent M/G/l queues when the arrival rate X and service distribution G vary

with n such that the traffic intensity is nearly 1. This is the basis of the

following results.

Consider a sequence of positive recurrent M/G/l queues indexed 
by n = 1,2, ,

th 
, '

where the n process has arrival rate X and service distribution G with meann 
n

-1 th th
In .For the n process, let M denote the maximum queue length up to the n

time the system becomes empty. With no loss in generality, assume that the

system is empty at time 0. We shall study the convergence in distribution of

(M n-a n)bnas the traffic intensity p n= XAi n1 tends to 1. Although, ourn n n n n n 
'"

limiting results are for large p . the limits yield good approximations for the

distribution of M for small as well as large p
nn

We assume that the Laplace transformzt
Yn(z) = eZtdG (t),n0f n 

, .

for z complex, is analytic on the region Rez > -x , where - < -x < 0, and that' n ~- n l .

Yn(X)- o for real x + -x . This assumption is equivalent to y (x) being finite
n ~ nn

in some real interval IxI < £ and

-x = inf {x < 0: -n(x) <n -- n

One consequence is that all moments of G exist. We define

n

(z) = yn (In(-z)) - z, for Rez < 1 + X/X.

Lemma 2.2 says that n has exactly one zero on the real interval (1, l+x I ).
W n n

We let rn denote this zero. Let G O be another such distribution with Xo, $0

". -'%. ,.°-.".,. ,V -."-."-.".,"-. ,.'." ." .' -" -," ." . . -. ..-. . -."'.. -" . .." "-. .,. %'"."-. .."..",."-,. -." ." ." ." ",- ""' ,,-" '" "" ','. 'V ,", " ..
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and r0 defined similarly.

We will show, under some natural conditions, that if n(r -1) - c, then Mn n

has the limit distribution F , wherecp

(2.1) F0 (x) = exp(-x - ) when c = 0

xF (x) = exp[-c/(e -1)] x>O, when 0 < c <C

F.(x) = exp(-e -x) when c

In particular, we will show that

(2.2) lim P((M -a )/b < x) = F (x) xER,n n n- c
n-Ko

where

(2.3) a =C b 0 < c <
n n n n

[an+nlog n(r n-i1) an  c 00o.

and

= log[(l-p )/ '(r )] l i/logr
n n n n n n n

THEOREM 2.1. Suppose that

(2.4) lim G n(x/) = G0 (x)
n-

for each G0 continuity point, r0 = i, lima # - , and when n(r - 1) 0

nn
(2.5) lim (l-P )/[n(r -l)(l+c)n =0 for each c > 0.

n n

Then the possible limit distributions for M are Fc , 0 < c < -. The M has limitn c - - n

distribution F if and only if n(r -1) - c. Appropriate norming constants for
c n

the convergence (2.2) are given by (2.3).
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REMARKS 2.2 (i) The distributions F , 0 < c < are of distinct type: F and F ,
C - - C C

Nare of the same type if and only if c=c'

(ii) For any positive recurrent M/G/l queue, without the artificial

dependence on n, Theorem 2.1 yields the approximation

(2.6) P(M logr - log[(l-p)/'(r)] < x) exp[-n(r-l)/(eX-l)], x > 0.

There are analogous approximations of the distribution of Mn by F0 and F., when

*n(r-l) is very small or very large. However (2.6) is better since the actual

value of n(r-l) appears on the right whereas it doesn't for the F0 and F

approximations, which represent degenerate cases. Furthermore, since n(r-l)

appears on the right, (2.6) is accurate when r (or p) is not near 1. For the

M/M/l queue, we found that the difference between the two sides of (2.6) is

below 0.018 when n > 15 and below 0.01 when n > 20 for any p in (0,1).

(iii) Assumption (2.4) says that G ('/Xn) converges weakly to G
n n 0*

This implies that y n(Xnz) y0 (z) and Cn (z) 0 (z) uniformly on compact sets.

We use the latter and r0 = 1 to ensure that: (a) r 1 1, and (b) there is an
n

n> 1 and N such that Pn(z) for n > N has no zeros on the annulus 1 < Izi <n

other than at r . Theorem 2.1 is true with (2.4) and r= 1 replaced bv
n (24 0  rpae

conditions (a) and (b).

(iv) We use assumption lim t # - along with r 1 to ensure that-- n nn-n

a + b x - . Assumption (2.5) is only for the degenerate case n(r -1) - 0.n n n

These two assumptions are automatically satisfied in natural cases such as those in

Corollary 2.4.

To prove Theorem 2.1, we use the following properties of 4n; we suppress

n

the n here for convenience.

AI
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LEMMA 2.3. (i) The function c(x), for real x, is strictly convex on the interval

(0, l+x/X) and

(2.7) (x) as x f 1 + x/X.

Furthermore, (x) has exactly two zeros on this interval at 1 and at some r > 1.

(ii) The only zeros of p(z) on the circles IzI = I and jzi = r are at 1 and r,

respectively, and these zeros are of order 1.

(iii) c(z) has no zeros on the annulus 1 < jzj < r.

Proof. (i) The second derivative of $(x) exists and is positive, and so

is strictly convex. Statement (2.7) is obvious when x < o, and, when x =

it follows by the strict convexity of and

CO

(2.8) lim '(x) = lim J tyetYdG(t) - 1 =
x-l+x/X Y fJ0

Clearly 4(i) = 0 and so the strict convexity and (2.7) ensure that there is

exactly one other zero of I at some point r in the interval (1, l+x/X).

(ii) Since y(X(l-x)) is strictly increasing and convex with fixed points at x = 1

and x = r (the zeros of c(x)), then

y(\(l-x)) < 1 when 0 < x < 1, and

Y(X(l-x)) < r when 0 < x < r.

Then on the circle Izi = 1, the only zero of P is at 1, since

lt(z)l > IzI - jy(l-z))f

> I - y(X(l-Rez)) > 0 when z # 1 (Rez < 1).

Similarly, on the circle Izi = r, the only zero of I is at r, since

I(z)I > r- Y(X(l-Rez)) > 0 when z # r (Rez < r).

The zeros of ¢ at 1 and r are of order one since p'(l) = P-1 < 0, and '(r) > 0 by

strict convexity.

....................................................%
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(iii) By Rouche's theorem and

I(z) - zi = y(X(l-z))l < y(X(1-Iz!)) = (IzI) + tzi < Izi when 1 < IzI < r,

we know that p(z) and z have the same number of zeros in 1 < Izi < r. Thus

has no zeros there.

Proof of Theorem 2.1. We shall first prove that n(r -1) c implies (2.2).

thAssociated with the n M/G/l process, let F denote the distribution of the
n

maximum queue length in one busy period (the period between two successive

entrances to state 0). From Takacs (1965) and Cohen (1969), we know that

(2.9) Fn (m) = 1 - 1 f( -z)z-m n(z)-idz/(2i)-l{ z-m n(z)- Idz,

C C
1.

where C is any circle in the z-plane with center at the origin and with radius

I
less than 1, and the complex integrals are over C in the counter-clockwise

direction.

Because the queueing process regenerates each time the system becomes

empty, then M is the maximum of n independent random variables with distribu-
n

tion F . Consequently,

P((M -a )/b < x) = F (a + b x)n .

n n n- n n n

It is well known that (1 + n ) n- e for any real numbers qn satisfying

nn -n n where _o < n < o. Then to prove (2.2), it suffices to show that

x - whenc 0X
(2.10) lim n[1 - F (a + b x)] c/(e-1) 0 < c < CO

n n n

ec =

To this end, consider the integrals in (2.9). We shall express them in

-,,orc convenient form. Choose circles C and C in the z-plane with centers .
n n%
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at the origin and radii less than I and greater than r , respectively, such
n

that_0 has no zeros other than 1 and r on the annulus between C and C

This is possible because of the nature of i ; see Lemma 2.3. For convenience,n

we temporarily suppress the subscript n on q , C, Cn' r n'
n0 non n

From Lemma 2.3, we know that the function z- mP(z)-  has poles of order

one at 1 and r and is analytic at all other z in the annulus between C and C.

The residues of this function at these poles are

-m -lim (z-l)z -(z) = i/P'(i) = -i/(i-C)z-1

lim (z-r)z-m(z)- 1/(rm'(r)).
z-4r

Then by the residue theorem for complex integration, it follows that

(2.11) (2i)- 1' z-m(z) -dz - (21i) 1 z-m (z) -dz

= -i/(l-p) + i/(rm0'(r))

Similarly,

(2.12) (27i)-I J (l-z)z-m (z)-Idz - (2Ti)-i J (l-z)z-ml(z)-idz
C C1

k' = (l-r)/(rm ' (r)),I

a. where the last term is the residue of the integrand of these integrals at r:

the residue at 1 is 0.

Combining (2.9), (2.11), (2.12) and letting m denote the integer p--t
n

of a + b x, we have
V n n

mn. I (zz-mn z-

n[l-F (an bnx)] : [n(1-r)/(r no'(r)) - n(27i)'{ (1-z)z nlb()-ldz]

C

/[-1i(l-0) + r n$ '(r)-i- C i)- z (z) -dz.

C

%-,

. ,4,. .. :.: . .,. _,(,"t,, ."..J,,"2,. '-' ".". .'. ".,. . i- '' ."' ."."., ''. . . ' .)Q "",'". . .?-I -A- '''- " ,I% ,', '. %'',', ' " ". 'd'..•. ,.. '""" J'#" " " "' "'" "'-7"" "%" -I
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That is,

(2.13) n[l-F (a +b W) (1+5 )/(r, -ln(r -l)l +E
n n n n n nn

where, returning .lie subscript n to (p ,r P ,C
n' n

(. nn + (- = n) (2il) -1) +lzz} z "

£= (1-p )[n(r-1)] 1 (27,i)- -1zz-n 'dz.-
n n n n 1 n

n

whe frtrnote that nubcrip n 1) -~cn implies.-

nn

x c0

(2.1) ur (; 1)/ n r-) = eXrn )/c0-< n)

m

E5 = 1 )[n(r 1)1-i(21Ti) - I  (lz n (z)-idz-"

n n

nn n n I "+

nn

(21) m n- 1/nr n- ) ('-)/ C <

x
e

This follows since

(n.15)[aenp[ b +bx + O(l)Il-og r n n n

+ xn(r-1) + o()c = 0

X+0(l) 0 C

n(r -i)e X(l) c c
n

U --1 %

u-i~

0, use e +u+o(u) as u 0 and (v 1) log v 1 as v 1.

'.4e now show that and : converge to 0. Choose rl in the interval
n n

1, x 14) such that 'has no zeros on the annul us I z r. This is

possible due to tlie nature of Since () (z) uniformly on compact

se(ts, there is a positive integer N such that (z) , for n N, has no zeros
n -

on e zw ther th:and atr. Therefore, we can take each C for n > N,
onn n • t

L;Zz'% " %

to h+x )  A th At radiu s on t anup (z : r, Ti is and -"

0 11
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using (2.15) we have

I6'1 < (1- Ii- 1 1_ 1 , n n ) W -ldz
Izl~n

fnlx+a +0(1)
O()B (1-P )/[n(r -I)r n c = 0

n n
m

Applying B n B0 < , assumption (2.5), and m n to these expressions, itn 0 n

follows that 6 n 0. A similar argument yields E - 0.n n

Using these limit statements for Cn' 6 and E in (2.13) implies (2.10),n n

which in turn yields (2.2). Thus, we have shown that n(r n-1) - c implies (2.2).

To prove the converse, suppose Mn has the limit distribution F . Let

n'(r ,-1) be any convergent subsequence of n(r -1) on the compact set [0,-]*n n

and let c' = lim n'(r n,-l). Then, from what we just proved, M , has the limit

distribution Fc,. But M ,, as a subsequence of Mn, also has the limit distri-
cn nt

bution F . Then by Khinchine's Theorem (see for instance Theorem 1.2.3 ofc

Leadbetter et al. (1983)), the distributions Fc, and F are of the same type.

Consequently c'=c. Thus, any convergent subsequence of n(r n-1) must converge

to c, and hence n(r n-1) - c. A similar argument shows that Fc, 0 < c < -, are

the only possible limit distributions of M nn

Two examples of Theorem 2.1 are as follows.

COROLLARY 2.4. The assertions of Theorem 2.1 are true under the single

hypothesis p -I I when (i) the service times are constant or (ii) each Gn n

is a gamma distribution with scale parameter nn and order k.

Proof. It suffices to verify the hypotheses of Theorem 2.1 for the two cases.

First, suppose the service times are constant. Then yn (z) = exp(-z/w ) and

N N- V
X%%



n (z) =expll-p n(l-z)]-z for each complex z (x n co). The zero r of on

(1,o-) is given by (r n-1) log r n= P n. Assumption (2.4) is satisfied since

*0 n-* 1 implies that y n(X nz) = exp(-p nz) -~ y 0(z) = exp(-z). Clearly r n~r =1

*Now, using '(z) = p [ (z) + z] - 1 and '(r )=pr -1, we can write
n n n nl n n n

Ct= {log[(r n-1) - log r n log[r nlogr n- (r n-lflh/logr n

Then by four applications of L'Hospital's rule and r n-~ 1, it follows that

ot n+ -1. Also, assumption (2.5) is satisfied, since an application of

L'Hospital's rule gives

(1- )/(r n-1) = [(r n- 1) - log rn /(rn-l1) 2 _,1/2.

Next, assume that G is a gamma distribution with Laplace transform

y (z)= (1+ <1 -kRe>x =r
n ( z) + n Z)nz>- T

Then (z) = [1+(P /k) (-z)I -k - z, Rez < 1 + n /X , and its zero r is one of
n n n n

the k+l solutions of 1-r n[1-(X nIn )(r n-1)1 k =0  Assumption (2.4) is satisfied

since p nkX /I n -~ 1 implies that y n(Xnz - y~z = (1+4k 1 Z)Ck al

r n-* r 0 and r0 -1 since P;(l) = o-1 = 0. Using Ik-

V()= p ( (z)+z)/[l + p Ik)( - W) - 1 and V'(r )=pr -1

n n n n n n)=P n
we can write

(X ={log[ (r - 1) - k(l-r 1k log~k(rl /kr) - (r-l)I }/log r
n n n

From five applications of L'Hopital's rule, it follows that a n-~ -1. Finally,

assumption (2.5) is satisfied since an application of L'Hospital's rule gives

".5-1/k 2
(1-p )/(rn 1) = (r l) -k(l-r ) (/ r -1) -(+1/k)/2.

n n .n.

.5QV
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*3. Results for GI/M/I Queues

In this section, we show that the limiting behavior of extreme values

of GI/M/l queues is analagous to that for M/G/I queues. Consider a sequence

of positive recurrent GI/M/I queueing systems indexed by n T 1,2,... For the

th
n system, let G denote the distribution of the times between arrivals and

n
* -I~ ~ let i denote the mean of the exponential service times. Assuming the

system is empty at time 0, let M denote the maximum queue length up to then
th

n time the system becomes empty.

Suppose that the Laplace transform yn(z) of G has the same form as in
n n

Section 2, and let

-n (z) = yn (n ( - z)) - z for Rez < 1 + Xn/P

An easy check shows that n has the same properties as 0n in Lemma 2.2 with

in in place of A n and rn and 1 reversed. In particular, n(x) has exactly two

zeros on (0, i+x /p at 1 and at some r < 1, and (z) has no zeros in the
n nfln

annulus r < Iz <1re" n

For the following result, we use the notation in (2.2) and (2.3) with

* n(r -i) replaced by n(i-on ) and:iq n

(3.1) cc = n log[-(l- n)Iin(r n)] n = -1/log r .n n n n

THEOREM 3.1. Suppose G n(-/p n ) converges weakly to G0 with r0 
= 1, and lim a n 0 "

n n n

Then the possible limit distributions for M are Fc, 0 < c < -. The M has limitn c - - n

distribution Fc if and only if n(l-p n)c. Appropriate norming constants for

the convergence (2.2) are given by (2.3) and (3.1).

Proof. This follows by a proof paralleling that of Theorem 2.1. Here the

maximum queue length in a busy cycle has the distribution
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(3.2) 1-F n)(m 27Ti/ cZ-%n(z) dz m = 0,1,...,

where C is a circle in the z-plane with center at the origin an- r ius less

1
than r see Cohen (1969). Choose circles C and C in the z-plane with

n' n n

centers at the origin and radii less than r and greater than 1, respectively,

such that p (z) has no zeros other than rn and 1 on the annulus between C 
1

n n n

and C n. Then by the residue theorem

(21i)-Il -m (z)-idz (2ni)-lf n z - m n (z)-idz = n (1)- + rnm n(rn)-.
nf n n n

1 n
C1  C
n

Using this, (3.2) and (1)- =P-l-1, we have
n n

(3.3) n[l- F (a +b x)] = {(n-np )/[n(l-pn)] + n
n n n n n n n

where

n = -n n - n nn

-m

£ = (27rin) - I z nz (z) dz
n fC n

n

and mn is the integer part of a +b x. Arguing as in the proof of Theorem 2.1,n n n

one can show that n(l-pn ) n c implies (2.10) and hence (2.2). The rest of the

proof is the same as before.

REMARKS 3.2. Analogues of Remarks 2.2 and Corollary 2.4 apply to Theorem 3.1.

Note that since (3.3) is simpler than (2.13), Theorem 3.1 does not need an

assumption like (2.5).
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